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ABSTRACT

In Saltzman’s seminal paper from 1962, the author developed a framework based on the spectral

method for the analysis of the solution to the classical Rayleigh–Bénard convection problem using low-

order models (LOMs), LOM (n) with n # 52. By way of illustrating the power of these models, he

singled out an LOM (7) and presented a very preliminary account of its numerical solution starting from

one initial condition and for two values of the Rayleigh number, l 5 2 and 5. This paper provides a

complete mathematical characterization of the solution of this LOM (7), herein called the Saltzman

LOM (7) [S-LOM (7)]. Historically, Saltzman’s examination of the numerical solution of this low-order

model contained two salient characteristics: 1) the periodic solution (in the physical 3D space and time)

that expand on Rayleigh’s classical study and 2) a nonperiodic solution (in the temporal space dealing

with the evolution of Fourier amplitude) that served Lorenz in his fundamental study of chaos in the

early 1960s. Interestingly, the presence of this nonperiodic solution was left unmentioned in Saltzman’s

study in 1962 but explained in detail in Lorenz’s scientific biography in 1993. Both of these fundamental

aspects of Saltzman’s study are fully explored in this paper and bring a sense of completeness to

the work.

1. Introduction

Thermally induced convection in response to a fluid

heated from below has found many applications in me-

teorology. Among the events that stem from this process

are buoyant plumes of air adjoining the ground or sea

surface in response to solar heating of that surface, sea

breezes that are generated through differential solar

heating of sea and adjoining land surfaces, and the for-

mation of stratus cloud over the ocean in the presence of

warm sea surface temperature. The classical Oberbeck

and Boussinesq approximation (Saltzman 1962) has

provided the mathematical basis for the analysis of

convection arising from thermal instability for well over

a century. In addition to providing a historical account

of the developments, Chandrasekhar (1961) contains a

thorough analysis of the linear version of the thermally

induced convection problem.

There are essentially two different routes to solve

the system of nonlinear coupled partial differential

equations (PDEs) arising from the above said ap-

proximation. The first is to numerically simulate con-

vection using a suitable space–time grid. The second

is to capture the spatial variations to any desired degree

of accuracy using a finite number of Fourier modes

and reduce the PDE to an initial value problem con-

sisting of n coupled nonlinear ordinary differential

equations (ODEs). This resulting system of coupled

nonlinear equations is called a low-order model (LOM)

of order n and is denoted by LOM (n). This latter ap-

proach is known as the Galerkin projection method

or simply a spectral method (Canuto et al. 2007; Shen

et al. 2011).

Early applications of both the space–time gridpoint

method and the spectral method to the convectionCorresponding author: S. Lakshmivarahan, varahan@ou.edu
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problem centered on linear dynamics and steady-state

solutions. A nearly complete list of contributions to

the problem up through the early 1970s is found in

J. S. Turner’s classic treatise on buoyancy in fluids

(Turner 1973, chapter 7). Prior to Saltzman’s (1962)

contribution, a theoretical paper byMalkus and Veronis

(1958) established the two-dimensional spectral frame-

work that he followed.

Saltzman (1962) meticulously developed the struc-

ture of a family of LOM (n) for n # 52. This fam-

ily of models has been the basis for numerous

subsequent studies. The well-known LOM (3), known

as the Lorenz 1963 model (Lorenz 1963), is a mem-

ber of this family of models as are the ones in

Curry (1978).

By way of illustration, Saltzman (1962) concluded

his paper with a preliminary and incomplete analysis

of a seven-mode model, called the Saltzman LOM (7)

[S-LOM (7)]. If Lorenz’s biography (Lorenz 1993) is

any guide, using this LOM (7), Saltzman seems to

have demonstrated the existence of a nonperiodic

solution to Lorenz at the time when he visited Saltzman

in 1961.

Despite the importance of this chaotic aspect of

Saltzman’s LOM (7), it is surprising that he failed to

mention it in his treatise. Yet we know from Lorenz’s

scientific biography (Lorenz 1993, p. 137) that Saltzman

was aware of this important feature. Although Lorenz

(1993) gives full credit to Saltzman for showing him the

preliminary nonperiodic results that were critical to his

seminal paper, we the readership of Lorenz (1963) were

unaware of this important interaction of the fellow

classmates at MIT in the 1950s.

Thus, there was a strong motivation to conduct a

full-scale examination of the properties of S-LOM

(7). Our analysis reveals that S-LOM (7) exhibits

an inherent competition between the amplification of

energy resulting from the nonlinear interaction and

dissipation resulting from the friction terms. For ini-

tial conditions (ICs) close to the origin, the amplifi-

cation component dominates, and the solution X(t)

grows in time. Once X(t) grows to a sufficient level,

the dissipation part takes control leading to asymp-

totic convergence in one of the four (two in each of

the invariant subspaces IS1 and IS2) 1D equilibrium

manifolds described below. It turns out that the S-LOM

(7) can be decomposed into a union of two copies of

Lorenz-like LOM (3) and one copy of a linear LOM

(3), which are interconnected by a set of nine nonlin-

ear coupling terms. It turns out that each of these two

Lorenz-like subsystems and the linear LOM (3) define

three invariant subspaces for S-LOM (7). The solution

X(t) 2 R7 of the S-LOM (7), depending only on the

distribution of energy in the initial condition and the

value of the parameter l, finds itself in one of the three

invariant subspaces.

The asymptotic behavior of X(t) in these invariant

subspaces is essentially dictated by the rotation sym-

metry of the S-LOM (7) projected onto these invariance

subspaces. Two of the invariant subspaces, labeled IS1
and IS2, each admit two branches of 1D equilibrium

manifolds parameterized by l. For the third invariant

subspace IS3, the origin is the only stable attractor. Fi-

nally, we bring out the multifaceted behavior of S-LOM

(7) using a deterministic ensemble experiment by

starting the solution from the 128 corners of a seven-

dimensional hypercube centered at the origin with sides

of length 2a for a 2 (0, 1].

There is a close connection between the class of en-

ergy conserving LOM (n) and the system of Volterra

gyrostats and their generalization. Refer to Gluhovsky

and Tong (1999), Lakshmivarahan and Wang (2008),

and Tong (2009) for details.

In section 2, we identify the three invariant sub-

spaces and the equilibria contained in them. The sta-

bility properties of these equilibria are developed in

section 3. Section 4 contains an analysis of the global

properties of the solution of S-LOM (7). Results of

the deterministic ensemble and other experiments are

contained in section 5. A concluding summary is given

in section 6. Detailed analysis of the stability of the

isolated equilibrium at the origin is contained in ap-

pendix A. Analysis of the boundedness of the solution

is given in appendix B. Appendix C describes a simple

encoding scheme to represent the 128 corners of the

seven-dimensional hypercube used in the ensemble

analysis given in section 5. Finally, in appendix D,

we describe a linear invertible transformation, using

which we prove the equivalence between the Lorenz-

like LOM (3) in IS1 and the Lorenz (1963) model with

s5 10 and b5 8/3.

2. Analysis of Saltzman’s model

The equations of S-LOM (7) may be stated as follows.

Let X5 (X1,X2, . . . ,X7)
T 2 R7 and f:R7 3R/R7, the

S-LOM (7) is given by

_X5 f(X, l), (1)

where f5 ( f1, f2, . . . , f7)
T is the vector field and l. 0 is

the Rayleigh number. From pages 336 and 340 in section

7 in Saltzman (1962), l5R/Rc is a control parameter,

and the components of this vector field (after relabel-

ing: A5X1, B5X2, C5X3, D5X4, E5X5, F5X6,

G5X7) are given by
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It can be verified (Saltzman 1962) that the values of

the coefficientsCijk in (2) depend on (i) the fundamental

wavelength L in the (horizontal) x and 2H in the (ver-

tical) z directions and (ii) the wavenumbers m and n in

the x and z directions, respectively. Table 2 in Saltzman

(1962) contains a listing of the numerical values of

Cijk for low-order models of order n# 52. For quick and

easy reference, the subset of values of Cijk for the

S-LOM (7) in (2) extracted from Saltzman (1962) are

given in Table 1 of this paper. Notice that l affects only

three components, f4, f5, and f6, rather directly. As-

suming the existence and uniqueness of the solution of

(1), let ft[X(0), l]5X[t, X(0), l] denote the solution

starting from the initial condition X(0) for a given l.

Clearly,ft(�, l):R7 /R7 defines the nonlinear flow that

relates the initial condition X(0) 2 R7 to the solution

X[t, X(0), l] 2 R7 at time t$ 0. In other words, ft(�, l)
defines the flow induced by the vector field f(X, l) in (1).

Definition 2.1: A subset S4R7 is an invariant set or

subspace for the flow induced by S-LOM (7) in (1)

and (2), if, forX(0) 2 S,ft[X(0), l] 2 S for all t$ 0.

That is, the solution starting from S remains in S for

all times.

Clearly, the whole space R7 and the origin are

trivially invariant sets. Our interest is in finding non-

trivial invariant sets.

Definition 2.2: A set E � R7 of points, where the field

vanishes, that is,

E5 f(X,l) 2 R7 3Rjf(X,l)5 0g,
constitutes the equilibria for the S-LOM (7) (Hirsch

and Smale 1973).

The equilibria may either be a collection of isolated

points or a continuous curveX*(l) or amanifold inR7

parameterized by l.

Notice that while an equilibrium is an invariant set,

the converse is not true. It turns out that S-LOM (7)

enjoys several equilibria and invariant sets.

a. Equilibrium E1

It can be verified by inspection that X5 0; the origin

of R7 is an isolated equilibrium for S-LOM (7) for all

l. 0. That is,

_X5 f(0,l)5 0. (3)

b. Invariant subspace

It turns out that S-LOM (7) in (1) and (2) admits three

invariant subspaces labeled as IS1, IS2, and IS3.

1) INVARIANT SUBSPACE IS1

It can be verified that the 3D subspace defined by

IS
1
5 fX

2
5X

3
5X

5
5X

6
5 0g

is an invariant subspace for S-LOM (7).

By projecting the S-LOM (7) onto this subspace, we

obtain the reduced dynamics in IS1 given by

_Y5F(Y, l), (4)

where Y5 (Y1,Y4,Y7)
T 2 R3, F:R3 3R/R3 with F5

(F1,F4,F7)
T 2 R3, where

TABLE 1. Values of coefficients Cijk.

C123 5 23:521 C213 5222:030 C312 5 1:561 C714 5 27:916

C140 521:500 C250 521:589 C360 520:185 C725 5 37:220

C110 52148:046 C220 52186:429 C330 52400:276 C770 5239:479

C435 5216:284 C534 5 16:284 C615 5 16:284

C426 5216:284 C516 5216:284 C624 5 16:284

C417 5213:958 C527 5218:610 C630 52486:877

C440 5214:805 C520 521947:508 C660 5240:028

C410 521460:631 C550 5218:643
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This closed subsystem resides in the 3D invariant sub-

space spanned by the original variables fX1, X4, X7g.
Notice also that new variables Yi are the surrogates for

the original Xi for i5 1, 4, 7 in IS1.

2) INVARIANT SUBSPACE IS2

Proceeding likewise, it can be verified that

IS
2
5 fX

1
5X

3
5X

4
5X

6
5 0g

is an invariant subspace for the S-LOM (7) in (1) and

(2). Again, by projecting S-LOM (7) onto this subspace,

the resulting reduced dynamics in IS2 is given by

_Z5G(Z,l), (6)

whereZ5 (Z2,Z5,Z7)
T 2 R3,G:R3 3R/R3 withG5

(G2,G5,G7)
T 2 R3, where

G
2
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G
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G
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5
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7
. (7)

This closed subsystem resides in the 3D invariant sub-

space spanned by the original variables fX2, X5, X7g.
Clearly, the new variables Zi are the surrogates for the

original Xi for i5 2, 5, 7 in IS2.

3) INVARIANT SUBSPACE IS3

The 3D subspace defined by

IS
3
5 fX

1
5X

2
5X

4
5X

5
5 0g

is an invariant subspace for the S-LOM (7). The pro-

jecting S-LOM (7) onto IS3 gives the following linear

dynamics:

_j5Hj , (8)

where j5 (j3, j6, j7)
T 2 R3 and H 2 R333 given by

H5

2
64

C
330

C
360

0

C
630

l C
660

0

0 0 C
770

3
75 . (9)

This closed subsystem lies in the 3D invariant subspace

spanned by fX3, X6, X7g, where ji are the surrogates for
the original Xi in IS3 for i5 3, 6, 7.

We hasten to add that a careful reading of the evo-

lution of the solution of the S-LOM (7) given in Fig. 3,

page 341 in Saltzman (1962) may suggest the presence

of invariant subspaces IS1 and IS2.

4) SALTZMAN–LORENZ INTERACTIONS:
S-LOM (7)

We begin this discussion with the key quotation from

Lorenz’s scientific biography The Essence of Chaos

(Lorenz 1993, p. 137) that is most pertinent:

At the Tokyo meeting1 more than a decade earlier I had
briefly mentioned the unexpected behavior of the
twelve-variable model,2 but I felt that a full discussion
of the relationship between lack of periodicity and
growth of small disturbances, and its implications for
long-range weather forecasting, belonged in a separate
paper. For that paper I was anxious to use an even
simpler system of equations as a principal illustrative
example. . . . I tried to simplify the model still more
without any luck. . . . My search came to an abrupt end
one afternoon in 1961 when I was visiting Barry
Saltzman at the Travelers Research Center. . . . Barry
showed me a system of seven equations that he had
been solving numerically. The equations were a bit like
mine, but they modeled convective fluid motion driven
by heating from below. . . . He was interested in peri-
odic solutions and had obtained a number of them, but
he showed me one solution that refused to settle down.
I looked at it eagerly, and noted that four of the seven
variables became very small. This suggested that the
other three were keeping each other going, so that the
system with only these three variables might exhibit
the same behavior. Barry gave me the go-ahead signal,
and back at M. I. T. the next morning I put the three
equations on the computer and, sure enough, there was
the same lack of periodicity that Barry had discov-
ered. Here was the long-sought system whose exis-
tence I had begun to doubt.

And, of course, exploration of this system led to Lorenz’s

seminal contribution, deterministic nonperiodic flow

(Lorenz 1963).

A number of observations are in order:

1) Lorenz’s system of three equations are given by

_x52sx1sy ,

_y52xz1 rx2 y ,

_z5 xy2bz . (10)

using the spectral expansion (refer to Saltzman 1962,

section 7)

1 The International Symposium on Numerical Weather Pre-

diction, Tokyo, Japan, 1960.
2 A simplified form of the filtered equations of numerical

weather forecasting.
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c5A sinax sinz ,

u5D cosax sinz1G sinz . (11)

Comparing (10) with the reduced system (5) in IS1
and (7) in IS2, it turns out that both of these are

Lorenz-like systems.

2) The three mode models in (5) and (7) differ from the

Lorenz model in (10) only in the scaling of the

variables. The parameter r in (10) corresponds to l

in (5) and (7). In the analysis of the Lorenz model

(10), the aspect ratio parameter b is set at 8/3 and

the Prandtl number s is set at 10. A careful look at

the derivation of S-LOM (7) in Saltzman (1962)

reveals that he has already incorporated b and s in

the numerical computation of the values of the

coefficients Cijk.

3) While our intent is not in analyzing the compar-

ative powers of different low-order models to

explain the convection phenomenon, an observa-

tion relating to the S-LOM (7) is worth mention-

ing here.

The second sentence in Saltzman’s (1962) conclu-

sions (section 8 of his paper) reads as follows:

. . .in spite of its simplicity the system treated does,
in fact, appear to contain a good deal of the real
physical content of the problem [Bénard’s laboratory
experiment].

To further amplify on this statement, consider water

at 208C with the follow physical parameters: coefficient

of thermal diffusivity k5 1:53 1023 cm s22, kinematic

viscosity3 n5 1:53 1022 cm2 s21, and coefficient of vol-

ume expansion «5 2:03 10238C21, and where the depth

of the waterH is 2mm in accord with order ofmagnitude

fluid depth in experiments reviewed by Chandrasekhar

(1961, chapter 2).

In this case, the Rayleigh number given by

R5
g«DTH3

kn
5 lR

c
5 l

27

4
p4 ,

where g is the acceleration of gravity and DT is the

temperature difference over the depth of water. If l5 2,

the adverse temperature gradient is DT/H’ 28Cmm21,

with DT5 3:78C.
Under these circumstances, it is interesting and rea-

sonable to consider the favored convective regime as a

function of the Rayleigh number—one with a three-

wave pattern (m5 3, n5 1) over the horizontal distance

ofL5 6
ffiffiffi
2

p
H or four waves over this horizontal distance

(m5 4, n5 1). The regime at equilibrium for l5 2 is the

3-wave regime. If l is decreased by 5%, l 5 1.9 instead

of l 5 2, the three-wave pattern remains with slight

changes in magnitude of the spectral components;

however, if l is increased by 5%, from l 5 2 to l 5 2.1,

the regime changes to a four-wave pattern. In short, if

DT is increased from 3.78 to 3.98C, there is a regime

change, whereas if it is decreased to 3.58C, there is no

regime change. In essence, this was the type of question

Rayleigh considered in development of theory un-

derlying Bénard’s experiments (Rayleigh 1916, 537–

539)—the size of cells in the presence of fluid instability.

4) S-LOM (7) in (1) and (2) is the union of the three

reduced systems in IS1, IS2, and IS3 and also contains

an additional nine nonlinear interaction terms. De-

spite these additional nonlinear interaction terms,

the following analysis shows that asymptotically the

solution of S-LOM (7) finds itself in either IS1 or

IS2. Further, depending only on the I.C and 0, l#

24:8046, after entering into IS1 or IS2, the solutions

approach stable equilibrium in the 1D manifold

parameterized by l. These stable values of the

Fourier amplitudes correspond to the periodic

solution of the Oberbeck–Boussinesq equation in

Saltzman (1962). This property partially captured

in Fig. 1. For values of l. 24:8046, the solution

exhibits chaotic behavior in IS1 and IS2.

FIG. 1.A pictorial view of the asymptotic behavior of S-LOM(7).

While the invariant subspaces IS1, IS2, and IS3 have a common

dimension X7, for clarity these invariant subspaces are shown as

distinct sets. S1*(l) and S2*(l) are the loci of the stable equilibria

embedded in IS1 and IS2, respectively.

3 In keeping with Saltzman’s model, we keep the Prandtl number

(Pr)5 n/k5 10 and accordingly change the value of n from its true

value of 1.0 3 1022 cm2 s21 to the value shown above.
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3. Invariant subspaces and equilibria

Against the backdrop of the existence of equilibria and

three invariant subspaces, we now describe the stability

of the equilibrium at E1 and the asymptotic properties

of the three reduced dynamics in ISi, i 5 1, 2, 3.

a. Stability of the equilibrium E1

To further characterize the stability properties

of E1, we need to compute the eigenvalues of the

Jacobian, Jf(X) of the field f(X, l) in (2) at X5 0

given by

J
f
(X)j

X50
5

2
66666666664

C
110

0 0 C
140

0 0 0

0 C
220

0 0 C
250

0 0

0 0 C
330

0 0 C
360

0

C
410

l 0 0 C
440

0 0 0

0 C
520

l 0 0 C
550

0 0

0 0 C
630

l 0 0 C
660

0

0 0 0 0 0 0 C
770

3
77777777775
. (12)

Let fai(l), Vi(l)g be the eigenvalue–vector pair for

the matrix in (12), where it is assumed without loss of

generality that a1(l)#a2(l)# � � �#a7(l). In appendix

A, it is shown that this computation of the eigensystem

for (12) reduces to that of four separable, simple sys-

tems. An immediate consequence of this separability is

that it greatly simplifies the problem of computing ei-

genvectors of (12). It follows from appendix A that ex-

actly two eigenvectors of (12) reside in each of the three

invariant subspaces IS1, IS2, and IS3 and the seventh one

lies along the seventh unit vector (0, 0, 0, 0, 0, 0, 1)T 2 R7.

The entries ai(l), 1# i# 7 of eigenvalues of (12) in

Table 2 as a function of l are obtained from the com-

putation in appendix A by sorting the mi(l), 1# i# 7

[m is defined in (A2)–(A6) in appendix A]. For example,

a1(l)5min
i
fmi(l)g and a7(l)5 max

i
fmi(l)g.

Referring to Table 2, the origin X5 0 undergoes bi-

furcation twice: first at l1 5 1:0004 and again when

l2 5 1:1231. It can be verified that the unstable eigen-

vector V7(l) at l5 1:0005 is given by

V
(1)
7 (l)5 (0:0101, 0, 0,20:9999, 0, 0, 0)T 2 IS

1
.

TABLE 2. Eigenvalues of Jf(X) at X5 0 for different l.

l a7(l) a6(l) a5(l) a4(l) a3(l) a2(l) a1(l)

1.0000 20.0054 21.8751 239.4790 239.7781 2162.8456 2203.1969 2400.5259

1.0001 20.0040 21.8735 239.4790 239.7781 2162.8470 2203.1985 2400.5259

1.0002 20.0027 21.8720 239.4790 239.7781 2162.8483 2203.2000 2400.5259

1.0003 20.0013 21.8704 239.4790 239.7781 2162.8497 2203.2016 2400.5259

1.0004 0.0000 21.8689 239.4790 239.7780 2162.8510 2203.2031 2400.5260

1.0005 0.0014 21.8674 239.4790 239.7780 2162.8524 2203.2046 2400.5260

1.0006 0.0027 21.8658 239.4790 239.7780 2162.8537 2203.2062 2400.5260

1.0007 0.0040 21.8643 239.4790 239.7780 2162.8550 2203.2077 2400.5260

1.1225 1.6265 20.0094 239.4790 239.7476 2164.4775 2205.0626 2400.5564

1.1226 1.6278 20.0078 239.4790 239.7475 2164.4788 2205.0642 2400.5565

1.1227 1.6291 20.0063 239.4790 239.7475 2164.4801 2205.0657 2400.5565

1.1228 1.6304 20.0048 239.4790 239.7475 2164.4814 2205.0672 2400.5565

1.1229 1.6317 20.0033 239.4790 239.7475 2164.4827 2205.0687 2400.5565

1.1230 1.6331 20.0018 239.4790 239.7474 2164.4841 2205.0702 2400.5566

1.1231 1.6344 0.0000 239.4790 239.7474 2164.4854 2205.0717 2400.5566

1.1232 1.6357 0.0012 239.4790 239.7474 2164.4867 2205.0732 2400.5566

1.1233 1.6370 0.0027 239.4790 239.7474 2164.4880 2205.0747 2400.5566

1.1234 1.6383 0.0042 239.4790 239.7473 2164.4893 2205.0762 2400.5567

1.1235 1.6397 0.0057 239.4790 239.7473 2164.4907 2205.0777 2400.5567

2 12.4903 12.4736 239.4790 239.5286 2175.3413 2217.5456 2400.7754

10 92.3587 80.8944 237.5448 239.4790 2243.7454 2297.4307 2402.7592

20 160.0089 138.2498 235.0950 239.4790 2301.1008 2365.0809 2405.2090

25 187.9856 161.9096 233.8821 239.4790 2324.7606 2393.0576 2406.4219

30 213.4952 183.4645 232.6771 239.4790 2346.3155 2407.6269 2418.5672
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At l5 2, the two unstable eigenvectors are given by

V
(2)
7 (l)5 (0:0093, 0, 0,21:000, 0, 0, 0)T 2 IS

1
,

V
(2)
6 (l)5 (0,20:0080, 0, 0, 1:000, 0, 0)T 2 IS

2
.

Thus, for l , 1.0004, the origin is a stable attractor.

For l. 1:0004, the origin becomes a saddle point. For

1:0004,l, 1:1231, solutions starting close to the or-

igin leaves the origin along the unstable direction

V
(1)
7 (l) given above. But for l. 1:1231, the solutions

leave the neighborhood of the origin along V
(2)
7 (l)

or V
(2)
6 (l) depending on the IC and l. Also notice that

the energy in V
(1)
7 (l) and V

(2)
7 (l) are concentrated

along dimensions X1 and X4 but that for V
(2)
6 (l) are

concentrated along X2 and X5. It turns out, as shown

below, that fX1, X4g and fX2, X5g lie in two comple-

mentary invariant subspaces.

We now move on to the analysis of the three reduced

subsystems. Since it is easy to analyze the linear sub-

system in IS3, we take it up first.

b. Analysis of the reduced linear dynamics in IS3

Referring to (8) and (9), j7 is decoupled from j3 and

j6. Besides, since C770 5239:479, it turns out that

j
7
(t)5 e239:479tj

7
(0) , (13)

which tends to 0 exponentially fast. The dynamics of

(j3, j6) is given by 
_j
3

_j
6

!
5

�
C

330
C

360

C
630

l C
660

��
j
3

j
6

�
. (14)

The eigenvalues of the 2 3 2 matrix in (14) are the

roots of

05 p(a)5a2 2 (C
330

1C
660

)a1 [C
330

C
660

2C
360

C
630

l] .

It can be verified that the two roots a1 and a2 of p(a)5
0 are real, distinct, and negative for all l, 177:7933.

Hence, the origin (j3 5 0, j6 5 0, j7 5 0) of the invariant

subspace IS3 is a stable attractor in IS3 and lim
t/‘

j(t)5 0

for all j(0) 2 IS3. Refer to the illustration in Fig. 1.

An immediate import of this analysis is that, if any

part of the energy in the solution X(t) of S-LOM (7)

starting from initial conditions X(0); IS3 spills over

to IS3, then that portion of the energy will dissipate

to zero.

c. Analysis of stability of the reduced nonlinear
dynamics in IS1

Solving the system of three nonlinear equations in the

three variables fY1, Y4, Y7g in

F(Y)5 0, (15)

where F(Y) is given in (5), we obtain the locus of the

equilibrium Y*(l)5S1
*(l) in IS1 (see Fig. 1). To this

end, define a new set of parameters:

a
1
5

C
110

C
140

, a
2
5

C
714

C
770

, a
3
5

C
417

C
410

, a
4
5

C
440

C
410

.

The values of ai are given in Table 3.

Solving (15), it follows that the set of all equilibria

of the reduced subsystem (5) in IS1 is given by

Y
4
52a

1
Y

1
,

Y
7
5 a

1
a
2
Y2

1 ,

and

a
1
a
2
a
3
Y3

1 1 (l2 a
1
a
4
)Y

1
5 0. (16)

From the third equation, either Y1 5 0 or

a
1
a
2
a
3
Y2

1 1 (l2 a
1
a
4
)5 0. (17)

Since a1a2a3 , 0 (see Table 3), it follows that

Y2
1 5

l2 a
1
a
4

ja
1
a
2
a
3
j 5

l2 0:9998

0:6666
.

Hence, for l$ 1, Y1 is given by

Y
1
561:2248(l2 0:9998)1/2. (18)

Substituting (18) in the first two equations in (16), we

get a total of three equilibria:

Y*5 (0, 0, 0)T,

Y*(l)5 (6Y
1
, 7 98:6973Y

1
,269:7889Y2

1 )
T
, l$ 1.

(19)

A remark on the symmetry of the dynamics (4) and

(5) is in order here.

It can be verified that the Lorenz-like system (4) and

(5) has an intrinsic symmetry with respect to the rotation

by p radians about the Y7 axis. Define

P5

2
421 0 0

0 21 0

0 0 1

3
5 ,

which represents a rotation operator by p radians with

respect to the Y7 axis. If Y5 (Y1,Y4,Y7)
T, then PY5

(2Y1,2Y4,Y7)
T, and P2 5 I, the identity matrix. Also,

it can be verified that
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P _Y5PF(Y)5F(PY) .

That is

2F
1
(Y)5F

1
(2Y

1
,2Y

4
,Y

7
),

2F
4
(Y)5F

4
(2Y

1
,2Y

4
,Y

7
),

1F
7
(Y)5F

7
(2Y

1
,2Y

4
,Y

7
).

Stated in other words, (4) and (5) are said to be equiv-

ariant (Gilmore and Letellier 2007) under the symmetry

matrix P. Hence, it is not surprising that there is a sys-

tem of two families of equilibria with signs given by

(1,2,2)T and (2, 1 ,2)T, which are rotations by p

radians of each other with respect to Y7. For future

reference, we denote these two branches of the equi-

librium manifold as IS1(1, 2, 2) and IS1(2, 1 , 2),

respectively.

To get an idea of the structure of this equilibria, from

(18) and (19), consider one of the branches given by

Y
1
*(l)5 1:2248(l2 0:9998)1/2,

Y
4
*(l)52a

1
Y

1
*(l)5298:6973Y

1
*(l) ,

Y
7
*(l)5 a

1
a
2
[Y

1
*(l)]2 5269:7889[Y

1
*(l)]2 . (20)

A plot of Yi*(l) versus l and a 3D view of this branch of

equilibria for 0, l# 30 are given in Fig. 2 and Fig. 3.

A sampling of the steady-state values as a function of

l are given in Table 4.

To characterize the stability of these equilibria, first

consider the Jacobian of (4) and (5) given by

J
F
(Y)5

2
64

C
110

C
140

0

C
417

Y
7
1C

410
l C

440
C

417
Y

1

C
714

Y
4

C
714

Y
1

C
770

3
75 . (21)

1) ANALYSIS OF THE EQUILIBRIUM AT Y*5 0

At this equilibrium, JF(Y) takes the form

J
F
(0)5

2
64

C
110

C
140

0

C
410

l C
440

0

0 0 C
770

3
75 , (22)

whose eigenvalues are given by a3 5C770 5239:479, 0

and the two roots of

p(a)5a2 2 (C
110

1C
440

)a1 [C
110

C
440

2C
140

C
410

l]5 0.

(23)

It can be verified the two roots of (23) are real and

negative only for l, 0:9999. Hence, this equilibrium in

IS1(1, 2, 2) is unstable for l$ 1.

2) ANALYSIS OF THE EQUILIBRIUM AT Y*(l)

The variation of the equilibriumY5 (Y1, Y4, Y7) and

the eigenvalues of the Jacobian at the equilibria of

the Lorenz-like system in (4) and (5) for 0, l# 30 are

given in Table 4. For 0,l# 24:8096, this equilibrium

is an attractor and the solution Y(t) spiral toward

and settle down on Y listed in Table 4. Recall that

Y1 5X1, Y4 5X4, and Y7 5X7 are the three amplitudes

of the 2D Fourier expansion of the solution of the

TABLE 3. Values of parameters ai and bi, with i 5 1, 2, 3, 4.

i

1 2 3 4

ai C110/C140 5 98:6973 C714/C770 520:7071 C417/C410 5 9:5513 1023 C440/C410 5 1:0133 1022

bi C220/C250 5 117:3247 C725/C770 520:9428 C527/C520 5 9:5513 1023 C550/C520 5 9:5683 1023

FIG. 2. Plots of the steady states (Y1, Y4, Y7) in IS1(1, 2, 2) as a function of l.
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Oberbeck–Boussinesq approximation (Saltzman 1962).

Thus, for l in this range, the stable asymptotic solution

Y5 (Y1, Y4, Y7) naturally corresponds to the peri-

odic solution in the physical space. However, for

l. 24:8096, the solution of (4) and (5) undergoes Hopf

bifurcation, the equilibria becomes unstable, and the

solution in IS1 exhibits chaotic behavior. Stated in

other words, the Lorenz-like system in (4) and (5) ex-

hibits characteristics quite similar to the Lorenz

(1963) model in (10). Refer to chapter 32 in Lewis et al.

(2006) for details.

A sample of this chaotic behavior for l5 28 and

IC Y1 5 0, Y4 5 1:0, and Y7 5 0 is illustrated in Fig. 4a.

We further quantify the key signatures of this cha-

otic behavior by computing the Lyapunov exponent

(Wolf et al. 1985) and the fractal dimension (Grassberger

and Procaccia, 1983) of the strange attractor for the

system (4) and (5) in IS1. Variation of the Lyapunov

index with l is given in Fig. 4b. Clearly, L1 becomes

positive when l’ 24:8096, indicating the onset of in-

stability leading to the chaotic behavior. Further, the

sum L1 1L2 1L3 , 0 for all l confirms that the phase

volume shrinks even in this chaotic regime. A com-

parison of the fractal dimension of the strange attrac-

tor for the Lorenz model in (10), the Lorenz-like

system (4) and (5) in IS1, and (6) and (7) in IS2 are

given in Table 5.

d. Analysis of asymptotic stability of the reduced
nonlinear dynamics in IS2

Solving the system of three nonlinear equations in

the three variables in fZ2, Z5, Z7g in

G(Z)5 0, (24)

where G(Z) is given in (7), we obtain the locus of the

equilibria Z*(l)5 S2*(l) in IS2 (see Fig. 1). To this end,

define control parameters

b
1
5

C
220

C
250

, b
2
5

C
725

C
770

, b
3
5

C
527

C
520

, b
4
5

C
550

C
520

. (25)

The values of bi are given in Table 3.

Solving (24), it follows that the set of all equilibria

for the reduced dynamics in (6) and (7) in IS2 are given by

Z
5
52b

1
Z

2
,

Z
7
5 b

1
b
2
Z2

2 ,

b
1
b
2
b
3
Z3

2 1 (l2b
1
b
4
)Z

2
5 0. (26)

From the third equation in (26), either Z2 5 0 or

FIG. 3. A 3D plot of the steady states in IS1(1, 2, 2) as l is varied

from 1.1 to 30.

TABLE 4. A sampling of the values of the steady states in IS1(1, 2, 2) as a function of l.

l Y1 Y4 Y7 EV1 EV2 EV3

1.1000 0.3877 238.2652 210.4902 2163.2276 236.154 30 22.9481

1.5000 0.8662 285.4953 252.3673 2164.7026 218.8137 1 13.1189i 218.8137–13.1189i

2.0000 1.2249 2120.8965 2104.7137 2166.4253 217.9523 1 26.8035i 217.9523–26.8035i

5.0000 2.4497 2241.7750 2418.7920 2174.8082 213.7609 1 61.4196i 213.7609–61.4196i

10.0000 3.6744 2362.6574 2942.2559 2184.6612 28.8344 1 91.4311i 28.8344–91.4311i

15.0000 4.5828 2452.3114 21465.7198 2191.9135 25.2083 1 112.2583i 25.2083–112.2583i

20.0000 5.3388 2526.9259 21989.1837 2197.6898 22.3201 1 128.9694i 22.3201–128.9694i

24.0000 5.8740 2579.7440 22407.9547 2201.5993 20.3654 1 140.5365i 20.3654–140.5365i

24.5000 5.9375 2586.0116 22460.3011 2202.0528 20.1386 1 141.8967i 20.1386–141.8967i

24.8096 5.9764 2589.8592 22492.7140 2202.3300 0.0000 1 142.7305i 0.0000–142.7305i

25.0000 6.0003 2592.2129 22512.6475 2202.4992 0.0846 1 143.2402i 0.0846–143.2402i

26.0000 6.1240 2604.4247 22617.3403 2203.3720 0.5210 1 145.8789i 0.5210–145.8789i

27.0000 6.2453 2616.3946 22722.0331 2204.2191 0.9445 1 148.4569i 0.9445–148.4569i

28.0000 6.3643 2628.1364 22826.7258 2205.0420 1.3560 1 150.9780i 1.3560–150.9780i

29.0000 6.4811 2639.6627 22931.4186 2205.8421 1.7561 1 153.4454i 1.7561–153.4454i

30.0000 6.5958 2650.9849 23036.1114 2206.6206 2.1453 1 155.8624i 2.1453–155.8624i
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b
1
b
2
b
3
Z2

2 1 (l2 b
1
b
4
)5 0. (27)

Since b1b2b3 is negative (refer to Table 3), it is imme-

diate that

Z2
2 5

l2 b
1
b
4

jb
1
b
2
b
3
j 5

l2 1:1226

1:0565
. (28)

Hence, for l. 1:1226, Z2 is given by

Z
2
560:9729(l2 1:1226)1/2. (29)

Substituting (28) in the first two equations in (26), we

obtain a total of three equilibria given by

Z*5 (0, 0, 0)T,

Z*(l)5 (6Z
2
, 7Z

5
,Z

7
)T, l$ 1. (30)

For future reference, we denote these two branches of

the equilibrium manifold in IS2 as IS2(1, 2, 2) and

IS2(2, 1 , 2), respectively.

To analyze the stability of these equilibria, consider

the Jacobian of (6) and (7) given by

J
G
(Z)5

2
64

C
220

C
250

0

C
527

Z
7
1C

520
l C

550
C

527
Z

2

C
725

Z
5

C
725

Z
2

C
770

3
75 . (31)

FIG. 4. (a) Phase plot for chaotic behavior in IS1 [IC, Y1(0)5 0, Y4(0)5 1, Y7(0)5 0, and l5 28]. (b) Variation of the Lyapunov

exponent with l for the Lorenz-like dynamics (4) and (5) in IS1 starting from the same initial condition as in Fig. 4a, Li refers to the ith

exponent and sum is �3

i51Li.

TABLE 5. Comparison of the fractal dimension of Lorenz attractor with those of the three sets of attractors arising from S-LOM (7).

Name of the attractor Projection

l

25 30 35 40 45 50

Lorenz 3D 2.053 2.064 2.071 2.076 2.081 2.086

Attractor in IS1 3D 2.057 2.065 2.072 2.077 2.082 2.087

Attractor in IS2 3D 2.051 2.059 2.064 2.069 2.074 2.079
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1) ANALYSIS OF THE EQUILIBRIUM AT Z*5 0

At this equilibrium, JG(Z) takes the form

J
G
(0)5

2
64

C
220

C
250

0

C
520

l C
550

0

0 0 C
770

3
75 , (32)

whose eigenvalues are given by a3 5C770 5239:479, 0

and the two roots of

p(a)5a2 2 (C
220

1C
550

)a1 [C
220

C
550

2C
250

C
520

l]5 0.

(33)

It can be verified the two roots of (33) are real and

negative only for l, 1:1226. Hence, this equilibrium is

unstable for l. 1:1226.

Since (6) and (7) are also a Lorenz-like system, it

enjoys symmetry under rotation by p radians. Hence

there are two branches of the equilibria with signs

(1,2, *)T and (2, 1 , *)T.

2) ANALYSIS OF THE EQUILIBRIUM AT Z*(l)

For definiteness, consider the branch of equilibria

given by

Z
2
*(l)5 0:9729(l2 1:1226)1/2,

Z
5
*(l)52b

1
Z

2
*(l)52117:3247Z

2
*(l) ,

Z
7
*(l)5 b

1
b
2
[Z

2
*(l)]2 52110:6137[Z

2
*(l)]2 . (34)

A plot of the steady states Z2, Z5, Z7 versus l are given

in Fig. 5. Figure 6 contains a 3D plot of the steady states,

which in turn defines periodic solution in the physical

space. A sampling of the values of the steady states in

IS2 and the eigenvalues of the Jacobian along the steady

states for 0, l# 30 are given in Table 6. Again, the

solution of (6) and (7) undergoes a Hopf bifurcation

at l*5 24:7498, and for l. l*, the equilibria become

unstable. In this unstable regime, the model exhibits

chaotic behavior. Fractal dimension of the resulting

attractor is given in Table 5. A sample of this behav-

ior for l5 28 and IC Z2(0)5 0:01, Z5(0)5 0:01, and

Z7(0)5 0:01 is illustrated in Fig. 7.

4. A global perspective

In this section, we address two important global prop-

erties of the S-LOM (7) in (1). These relate to the rate of

change of phase volume and the boundedness of the

trajectories of (1).

The divergence of the vector field f(X, l) in (1) using

the values of the coefficients in Table 1 is given by

D
X
f(X,l)5 �

7

i51

›f
i

›X
i

5 �
7

i51

C
ii0
, 0. (35)

Hence, by Liouville’s theorem in Arnold (1992, sec-

tion 6, article 27, chapter 3), the phase volume de-

creases at an exponential rate proportional to the

term �7

i51jCii0j. Consequently, the equilibrium has to

be a manifold of zero phase volume. This is corrobo-

rated by our analysis in sections 2 and 3, where it is

shown that the equilibrium is either the origin or the 1D

manifolds in IS1 and IS2.

FIG. 5. Plots of the steady states (Z2, Z5, Z7) in IS2(1, 2, 2) as a function of l.

FIG. 6. A 3D plot of the steady states in IS2(1, 2, 2) as l is varied

from 1.2 to 30.
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To examine the boundedness of the solution

of (1), consider a generalized energy functional

given by

E(X)5
1

2
XTKX , (36)

where K is a diagonal matrix given by

K5Diag(K
1
,K

2
, . . . ,K

7
), (37)

with Ki . 0 for 1# i# 7.

It is shown in appendix B that for large time t,

_E(X), 0. (38)

Since the vector field in (1) is smooth in time t, the so-

lution X(t) cannot become unbounded in finite time.

Combining these, it is immediate that the solution X(t)

remains bounded for all time t$ 0.

5. An ensemble analysis

To further understand the dependence of the behav-

ior of the solution of (1) on the initial conditions and the

parameter l, in this section, we describe the results of a

TABLE 6. A sampling of the values of the steady states in IS2(1, 2, 2) as l is varied.

l Z2 Z5 Z7 EV1 EV2 EV3

1.2000 0.2707 231.7562 28.1038 2205.3133 236.7189 22.5188

1.5000 0.5977 270.1227 239.5137 2206.2597 219.1456 1 9.0085i 219.1456 1 9.0085i

2.0000 0.9113 2106.9194 291.8635 2207.7737 218.3887 1 26.3576i 218.3887–26.3576i

5.0000 1.9157 2224.7646 2405.9625 2215.5706 214.4902 1 64.7177i 214.4902–64.7177i

10.0000 2.8988 2340.0952 2929.4609 2225.4637 29.5437 1 97.6565i 29.5437–97.6565i

15.0000 3.6243 2425.2181 21452.9592 2233.1334 25.7088 1 120.5101i 25.7088–120.5101i

20.0000 4.2271 2495.9396 21976.4576 2239.4364 22.5573 1 138.8224i 22.5573–138.8224i

24.0000 4.6534 2545.9602 22395.2563 2243.7899 20.3805 1 151.4785i 20.3805–151.4785i

24.7498 4.7040 2551.8941 22447.6061 2244.2993 20.1259 1 152.9656i 20.1259–152.9656i

24.5000 4.7291 2554.8349 22473.7601 2244.5511 0.0000 1 153.7015i 0.0000–153.7015i

25.0000 4.7540 2557.7649 22499.9560 2244.8015 0.1253 1 154.4340i 0.1253–154.4340i

26.0000 4.8526 2569.3249 22604.6557 2245.7859 0.6174 1 157.3176i 0.6174–157.3176i

27.0000 4.9491 2580.6547 22709.3553 2246.7444 1.0967 1 160.1338i 1.0967–160.1338i

28.0000 5.0438 2591.7677 22814.0550 2247.6784 1.5637 1 162.8869i 1.5637–162.8869i

29.0000 5.1368 2602.6759 22918.7547 2248.5892 2.0191 1 165.5805i 2.0191–165.5805i

30.0000 5.2281 2613.3900 23023.4543 2249.4778 2.4634 1 168.2181i 2.4634–168.2181i

FIG. 7. Time evolution and phase plot for chaotic behavior in IS2 [IC, Z2(0)5 0:01, Z5(0)5 0:01, Z7(0)5 0:01 and l5 28].
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deterministic ensemble experiment. We choose a set of

27 5 128 initial conditions corresponding to the coor-

dinates of the vertices/corners of the seven-dimensional

hypercube centered at the origin with the length of the

sides given by 2a for a 2 (0, 1] and varying l. Thus,

(2a,2a, . . . ,2a)T is one vertex as is (a,a, . . . ,a)T.

Using the one-to-one encoding scheme described in

appendix C, we compress the seven coordinates into

an integer. Accordingly, the vertex with coordinates

(2a,2a, . . . ,2a)T is denoted by the number zero and

the vector with coordinates (a,a, . . . ,a)T is denoted by

the number 127. Likewise, the vector with coordinate

(a,2a,a,2a,2a,a,a)T is denoted by the integer 83.

See appendix C for details.

FIG. 8. Plot of the components of the solution of (1) for l5 2

converging to equilibria in IS1.

FIG. 9. Plot of the solution of (1) for l5 2 converging to equilibria

in IS2.
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a. Experiment 5.1

By keeping l5 2 fixed and varying the initial

conditions over the 128 vertices of the hypercube

labeled from 0 through 127 with a5 0:01, the model

solutions computed using the Runge–Kutta routine

in MATLAB are plotted in Figs. 8 and 9. A record of

the equilibria to which the solutions converge are

given in Table 7. Recall from our earlier discussion

in section 3 that each of the steady-state solutions of

S-LOM (7) defines a periodic behavior in the phys-

ical space.

Figure 8 contains the plot of the solution corre-

sponding to 96 initial conditions that lead to conver-

gence to the equilibria in IS1. Of these, the solutions

corresponding to n1 5 48 initial conditions converging to

the equilibria in IS1(1, 2, 2) are shown in the left

column of Fig. 8, and the solutions from the rest of the

n2 5 48 initial conditions converging to its image equi-

libria in IS1(2, 1 , 2) are shown in the right column of

Fig. 8.

Figure 9, likewise, contain the plot of the solutions

from the rest of 32 initial conditions converging to the

equilibria in IS2. Of these, exactly m1 5 16 solutions

converge to IS2(1, 2, 2), as shown in the left column of

Fig. 9, and the rest m2 5 16 solutions converge to the

equilibria in IS2(2, 1 , 2), as given in the right column

of Fig. 9.

Stated in other words, the entries in the Table 7 and

the plots in Figs. 8 and 9 together provide a complete

picture of the behavior of the ensemble for l5 2.

b. Experiment 5.2

By keeping a5 0:01 as in experiment 5.1 and increasing

l5 2:5, we repeated the analog of experiment 5.1. It turns

out in this case, the solution from all the 128 points con-

verge to an equilibrium in IS2 with exactly n1 5 64 con-

verging to IS2(1, 2, 2) and the rest converging to

IS2(2, 1 , 2) as shown in Table 8 and Fig. 10.

c. Experiment 5.3

In this experiment, we explore the behavior of the

solution of the S-LOM (7) in (1) and (2) starting from

the same initial condition as in Saltzman 1962 paper,

namely, X1(0)5X2(0)5X3(0)5 0:0005 and X4(0)5
X5(0)5X6(0)5X7(0)5 0:0 and when l5 28. This ini-

tial condition is such that there is nonzero initial energy

in each of the subspaces IS1, IS2, and IS3. Since l5 28,

the energy within the subspaces IS1 and IS2 grow and

become chaotic, and the solution in the three subspaces

interact through the common dimension X7. Phase

plots Xi versus Xj for i 6¼ j for this case are given in

Fig. 11. From the figure, we can easily identify the

chaotic behavior in the form of a double attractor, one

in each of the subspaces IS1 and IS2 and their in-

teraction with IS3. Variation of the seven Lyapunov

exponents Li, 1# i# 7 for the S-LOM (7) in (1) and (2)

with l starting from the same initial condition as in

Saltzman (1962) is given in Fig. 12. Positive values ofL1

and L2 further confirm the simultaneous onset of chaos

in IS1 and IS2. Also notice that the overall sum of all the

seven Lyapunov exponents are negative. It should be

TABLE 7. A record of the equilibria to which the solutions converge when l 5 2.

Equilibrium Encoding of initial conditions

IS1(1, 2, 2) 1 3 5 7 9 13 17 19 21 23 27 31 33 35 37 39

41 45 49 51 53 55 59 63 65 67 69 71 73 77 81 83

85 87 91 95 97 99 101 103 105 109 113 115 117 119 123 127

IS1(2, 1 , 2) 0 4 8 10 12 14 18 22 24 26 28 30 32 36 40 42

44 46 50 54 56 58 60 62 64 68 72 74 76 78 82 86

88 90 92 94 96 100 104 106 108 110 114 118 120 122 124 126

IS2(1, 2, 2) 2 6 11 15 34 38 43 47 66 70 75 79 98 102 107 111

IS2(2, 1 , 2) 16 20 25 29 48 52 57 61 80 84 89 93 112 116 121 125

TABLE 8. As in Table 7, but for l 5 2.5.

Equilibrium Encoding of initial conditions

IS2(1, 2, 2) 2 3 6 7 10 11 14 15 18 19 22 23 26 27 30 31

34 35 38 39 42 43 46 47 50 51 54 55 58 59 62 63

66 67 70 71 74 75 78 79 82 83 86 87 90 91 94 95

98 99 102 103 106 107 110 111 114 115 118 119 122 123 126 127

IS2(2, 1 , 2) 0 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29

32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61

64 65 68 69 72 73 76 77 80 81 84 85 88 89 92 93

96 97 100 101 104 105 108 109 112 113 116 117 120 121 124 125
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interesting to identify the different basins of attraction

for various values of l.

6. Summary and conclusions

While our analysis does not add much to the physical

aspects of convection that is already contained in

Saltzman (1962), it brings completeness to Saltzman’s

profound contribution to the theory of convective mo-

tion in fluids, which is concisely summarized as follows:

1) The state space R7 for the S-LOM (7) in (1) is the

union of three invariant subspaces IS1, IS2, and IS3.

The presence of the three invariant subspaces is an

artifact resulting from the structure of S-LOM (7) in

(1) and (2).

2) The phase volume decreases exponentially in time

and the solutions to S-LOM (7) remain uniformly

bounded for all initial conditions and values of l.

3) The S-LOM (7) when projected onto IS3 reduces to

an asymptotic stable linear dynamics with the origin

as the unique global attractor in IS3.

4) There are two branches of the equilibria—one-

dimensional manifold parameterized by l, in IS1
dented by IS1(1, 2, 2) and IS1(2, 1 , 2), which

are reflections of each other with respect to X7 axis.

Similarly, there are two branches of equilibria—

one-dimensional manifold parameterized by l, in

IS2 dented by IS2(1, 2, 2) and IS2(2, 1 , 2), which

are also reflections of each other with respect to

X7 axis.

5) Chaotic regime: For values of l. l*, the solutions in

IS1 and IS2 exhibit chaotic behavior resulting from

a Hopf bifurcation. The resulting instability is charac-

terized by the existence of a positive Lyapunov expo-

nent and the fractal dimension of the strange attractor.

6) Periodic solution of Lorenz-like LOM (3) in (4) and

(5) and (6) and (7).

Our analysis of the Lorenz-like LOM (3) given

by (4) and (5) in IS1 and that by (6) and (7) in IS2
thus far concentrated on establishing a set of

qualitative similarity measures between these

two systems and the Lorenz 1963 model (Lewis

et al. 2006, chapter 32) in (10). This list includes (i)

the existence of bifurcation of the equilibrium

at the origin for values of l close to 1, (ii) the

presence of the 1D equilibrium manifolds in IS1
and IS2 parameterized by l, (iii) the existence of

Hopf bifurcation for l5 l*, and (iv) and compu-

tation and comparison of Lyapunov exponents

and the fractal dimension of the resulting chaotic

attractor.

However, a careful review of the classical litera-

ture (Sparrow 2012) relating to the analysis of the

Lorenz 1963 model reveals that this latter model

also exhibits a rich variety of periodic behavior. This

observation calls for the analysis of the periodic

solutions of the Lorenz-like LOM (3) in (4) and (5)

and (6) and (7).

The latter analysis can be done in one of two

ways. First is to use a numerical method described in

appendix E of Sparrow (2012) for locating a peri-

odic orbit. Clearly, this involves detailed explora-

tion of the state space and the parameter space,

FIG. 10. Plot of the solution of (1) for l5 2:5 converging to equi-

libria in IS2.
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which in principle could be time consuming. A

second alternative is to construct an invertible

transformation, using which Lorenz-like systems

in (4) and (5) and in (6) and (7) can be reduced to

the Lorenz system in (10). Indeed, by rescaling the

state variables (Y1,Y4, Y7) and the time variable t in

appendix D, we construct a linear invertible trans-

formation that proves the equivalence between LOM

FIG. 11. Phase plot of solution to S-LOM (7) with X1(0)5X2(0)5X3(0)5 0:0005 and X4(0)5X5(0)5
X6(0)5X7(0)5 0:0—same initial condition as in Saltzman (1962).

1602 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 76

D
ow

nloaded from
 http://journals.am

etsoc.org/jas/article-pdf/76/6/1587/4830976/jas-d-17-0344_1.pdf by N
O

AA C
entral Library user on 11 August 2020



(3) in (4) and (5) and a specific version of (10) with

s5 10, b5 8/3, where r in (10) is related to the l in

(4) and (5) by the relation r5 0:9993l. A similar

transformation between (6) and (7) and (10) can be

likewise obtained.

7) For general initial conditions with nonzero energy in

IS1 and IS2, the S-LOM (7) in (1) and (2) exhibits

simultaneously similar behavior in IS1 and IS2. The

presence of the double attractor is noteworthy.

Finally, Saltzman (1962) has had great appeal to

readership in fluid mechanics and meteorology. This

work has brought some sense of completeness to

Saltzman (1962) and should fundamentally be viewed

as a tribute to him and a means to expand the usefulness

of the family of low-order models for convection.
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APPENDIX A

Stability of Equilibrium E1 at the Origin

Analysis of the stability of the equilibrium E1 at the

origin relates to quantifying the eigenstructure of the

sparse, banded Jacobian matrix Jf(0) in (12), which

takes the general form

A5

2
66666666664

a
1

0 0 b
1

0 0 0

0 a
2

0 0 b
2

0 0

0 0 a
3

0 0 b
3

0

c
1
l 0 0 a

4
0 0 0

0 c
2
l 0 0 a

5
0 0

0 0 c
3
l 0 0 a

6
0

0 0 0 0 0 0 a
7

3
77777777775
, (A1)

FIG. 12. Variation of the Lyapunov ex-

ponent with l for the S-LOM (7) in (1) and

(2) starting from the same initial condition

as in Fig. 11, Li refers to the ith exponent

and sum 5 �7

i51Li.
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where ai 5Cii0 for 1# i# 7,b1 5C140,b2 5C250,b3 5C360,

c1 5C410, c2 5C520, and c3 5C630, whose numerical

values are given in Table 1.

Let m 2 R and h 2 R7 be an eigen pair of A in (A1),

that is, Ah5mh. By direct substitution, it can be

verified that the sparse, banded structure of A allows

us to naturally decompose the seven-dimensional

linear system

Ah5mh (A2)

into a collection of four disjoint subsystems each

of whose dimension is no more than two, as shown

below:

S
1
: (a

1
2m)h

1
1 b

1
h
4
5 0,

c
1
lh

1
1 (a

4
2m)h

4
5 0; (A3)

S
2
: (a

2
2m)h

2
1 b

2
h
5
5 0,

c
2
lh

2
1 (a

5
2m)h

5
5 0; (A4)

S
3
: (a

3
2m)h

3
1 b

3
h
5
5 0,

c
3
lh

3
1 (a

6
2m)h

6
5 0; (A5)

and

S
4
: (a

7
2m)h

7
5 0. (A6)

Indeed, by solving these subsystems, we can recover the

full eigenstructure A in (A1).

Solution of S4: Trivially, the seventh eigenvalue m7

given by m7 5 a7 5C770 5239:479 is independent

of l. Its corresponding eigenvector is

h5 (0, 0, 0, 0, 0, 0, 1)T 2 IS
1
\ IS

2
\ IS

3
, (A7)

which is the seventh standard unit vector in R7.

Solution of S1: The two eigenvalues, say, m1 and m2

arising from solving the 2 3 2 linear system in

(A3) are given by the solution of the characteristic

polynomial

p
1
(m)5m2 2 (a

1
1 a

4
)m1 (a

1
a
4
2 lb

1
c
1
)5 0. (A8)

Let m1 $m2. The variation of m1 as a function of l is

given in Fig. A1a. It can be easily verified that the

two (distinct) eigenvectors corresponding to m1 and

m2 take the general form as

h5 (h
1
, 0, 0,h

4
, 0, 0, 0)T 2 IS

1
, (A9)

where h2
1 1h2

4 5 1. From the definition of the invariant

subspace IS1, it is immediate that these two eigenvec-

tor are in IS1.

Solution of S2: Following similar reasoning, the next

two eigenvalues m3 and m4 are obtained by solving

the characteristic polynomial

p
2
(m)5m2 2 (a

2
1 a

5
)m1 (a

2
a
5
2 lb

2
c
2
)5 0. (A10)

Let m3 $m4. The variation of m3 as a function of l

is given in Fig. A1b. The two (distinct) eigenvec-

tors corresponding to m3 and m4 take the general

form as

h5 (0,h
2
, 0, 0,h

5
, 0, 0)T 2 IS

2
, (A11)

where h2
2 1h2

5 5 1. These two eigenvectors belong to

the subspace IS2.

Solution of S3: The last two remaining eigenvalues

m5 and m6 are the roots of the characteristic

polynomial

p
3
(m)5m2 2 (a

3
1 a

6
)m1 (a

3
a
6
2 lb

3
c
3
)5 0 (A12)

of the solution in (A5). It is a simple exercise to

verify the eigenvectors for m5 and m6 taking the

general form

FIG. A1. Plot of the variation of eigenvalues m1and m3 of A as a function of l: (a) m1 only, (b) m3 only, and (c) m1and m3.
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h5 (0, 0,h
3
, 0, 0,h

6
, 0)T 2 IS

3
, (A13)

where h2
3 1h2

6 5 1. These two eigenvectors belong to

the subspace IS3.

Summary of the stability analysis: From the varia-

tion of the seven eigenvalues of A as a function of

l, it is immediate that the first bifurcation occurs

at l’ l1*5 1:0004. Below this value, the origin is a

hyperbolic attractor. Above this value, the origin

becomes a saddle. More specifically, m1 becomes

positive for l. 1:0004 and the corresponding

unstable eigen direction h5 (h1, 0, 0,h4, 0, 0, 0)
T 2

IS1 carries the solution away from the origin.

As we increase l, around l’ l2*5 1:1231, the

eigenvalue m3 of the system S2 becomes positive,

creating another unstable eigen direction h5
(0,h2, 0, 0,h5, 0, 0)

T 2 IS2. However, from Fig. A1c,

it is clear that m1 remains the dominant eigen value

for all l# l3*5 2:0050, but m3 becomes dominant

for l. l3* . Hence, for all l1*, l, l2*, any solution

starting close to the origin moves away from it

along the eigenvector h5 (h1, 0, 0,h4, 0, 0, 0)
T in IS1

depending on l and settles down in an equilibrium

in IS1. For l. l2* , solution close to the origin moves

away from it either along (h1, 0, 0,h4, 0, 0, 0)
T 2 IS1

or along (0,h2, 0, 0,h5, 0, 0)
T 2 IS2, depending on

both the initial condition and value of l.

For l. 28, the system becomes chaotic but re-

mains within IS1 or IS2, depending on the initial

condition.

APPENDIX B

Boundedness of the Solution of S-LOM (7)

Consider a quadratic energy function E:R7 /R

given by

E(X)5
1

2
XTKX , (B1)

where K 2 R737 is a diagonal matrix:

K5Diag(K
1
,K

2
, . . . ,K

7
) (B2)

with positive diagonal entries. Since the S-LOM (7) in

(2) is a forced, dissipative system, E(X) cannot be a

constant along its trajectory.

Our goal is to choose the diagonal elements of K such

that the sign of _E(X) can be conveniently and analyti-

cally evaluated. Computing the time derivative of E(X)

along the trajectory of (2) and collecting the like terms,

we obtain

_E(X)5 �
7

i51

KX
i
_X
i

5X
1
X

2
X

3
[K

1
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1K
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4
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5
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4
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C
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]
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4
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6
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4
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6
C

624
]
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2
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5
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7
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C
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X

4
X

7
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4
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4
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1
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4
C

410
l]

1X
2
X

5
[K

2
C
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1K

5
C

520
l]

1X
3
X

6
[K

3
C

360
1K

6
C

630
l]

1K
1
C

110
X2

1 1K
2
C

220
X2

2 1K
3
C

330
X2

3

1K
4
C

440
X2

4 1K
5
C

550
X2

5 1K
6
C

660
X2

6

1K
7
C

770
X2

7 , (B3)

which is the sum of 6 cubic and 10 quadratic terms.

Since

C
435

52C
534

, 2C
527

52C
725

,

C
426

52C
624

, 2C
417

52C
714

,

C
516

52C
615

, (B4)

setting

K
4
5K

5
5K

6
5 2K

7
5 1, (B5)

the coefficients of the five cubic terms except that of

X1, X2, andX3 vanish. Now setting

K
1
C

123
1K

3
C

312
5K

2
jC

213
j

or

�
K

1

K
2

�
C

123

jC
213

j1
�
K

3

K
2

�
C

312

jC
213

j5 1, (B6)

that is,

(K
1
/K

2
)

0:9366
1

(K
3
/K

2
)

14:1123
5 1, (B7)

we force the coefficient of the remaining cubic terms

X1, X2, andX3 also to zero. Clearly, there are infinitely

many choices for K1, K2, and K3 satisfying (B7).

Assuming that the values of Ki are chosen to satisfy

(B5) and (B7), we now regroup the remaining 10 qua-

dratic terms into three groups consistent with the
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properties of the invariant subspaces IS1, IS2, and IS3
in section 2. Accordingly,

_E(X)5Q
14
(X

1
,X

4
)1Q

25
(X

2
,X

5
)1Q

36
(X

3
,X

6
)

1Q
7
(X

7
) , (B8)

where

Q
14
(X

1
,X

4
)5K

1
C

110
X2

1 1K
4
C

440
X2

4 1X
1
X

4
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1
C
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1K
4
C

410
l] ,
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2
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5
)5K

2
C

220
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2 1K
5
C

550
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5 1X
2
X

5
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1K
5
C

520
l] ,

Q
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,X

6
)5K
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3 1K
6
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6 1X
3
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6
[K

3
C

360

1K
6
C

630
l] ,

and

Q
7
(X

7
)5K

7
C

770
X2

7 . (B9)

From Table 1, since C770 5239:479, Q7 in (B9) is

negative definite. To analyze the negative definiteness of

the rest of the three quadratic forms in (B9), we invoke

two basic facts from the theory of quadratic forms.

Fact 1: If A 2 Rn3n, then A5As 1Ass, where the

symmetric part As and the skew-symmetric part

Ass are given by As 5 (1/2)(A1AT) and Ass 5
(1/2)(A2AT).

Fact 2: From XTAX5XTATX, it is immediate that

XTAX5XTAsX.

Sign definiteness of Q14: Using these facts,

Q
14
5 ðX

1
X

4
Þ
�
a
1

b
1

b
1

c
1

��
X

1

X
4

�
, (B10)

with a1 5K1C110, c1 5K4C440, and 2b1 5K1C140 1
K4C410l. Hence, Q14 is negative definite when

a
1
c
1
, b2

1 . (B11)

Substituting for a1, b1, c1 and using the values of Cijk

from Table 1, since K4 5 1, (B11) reduces to

4K
1
# (0:032K

1
1 31:198l)2. (B12)

Sign definiteness of Q25: Again, from

Q
25
5 ðX2

X
5 Þ
�
a
2

b
2

b
2

c
2

��
X

2

X
5

�
, (B13)

with a2 5K2C220, c2 5K5C550, and 2b2 5K2C250 1
K5C520l, it follows that Q25 is negative definite if

a2c2 , b2
2. Substituting for a2, b2, c2 and using the

values of Cijk from Table 1, since K5 5 1, Q25 is neg-

ative definite when

4K
2
# (0:02696K

2
1 33:04l)2. (B14)

Sign definiteness of Q36: By similar arguments

Q
36
5 ðX

3
X

6
Þ
�
a
3

b
3

b
3

c
3

��
X

3

X
6

�
, (B15)

with a3 5K3C330, c3 5K6C660, and 2b3 5K3C360 1
K6C630l,Q36 is negative definite if a3c6 , b2

3. Substitut-

ing for a3, b3, c3 and using the values of Cijk from

Table 1, since K6 5 1, Q36 is negative definite when

4K
3
# (0:0014K

3
1 3:667l)2. (B16)

Stated in other words, all the four quadratic forms

in (B9) are simultaneously negative definite if there

exist constants K1, K2, and K3 that satisfy (B7),

(B12), (B14), and (B16) simultaneously.

Setting K2 5 1/6 in (B7), it follows that 0#K1 #

0:1561 and 0#K3 # 2:3521. Using the standard

majorizationB1 argument, inequalities in (B12), (B14),

and (B16) hold if

43 0:15615 0:6244# (31:198l)2,

43
1

6
5 0:6667# (33:04l)2,

43 2:35215 9:408# (3:667l)2. (B17)

Clearly, (B17) holds for all l$ 1. Hence, _E(X)# 0

and the solution of S-LOM (7) in (2) is bounded for

all l$ 1.

APPENDIX C

An Encoding of the Ensemble Members

In this appendix, we develop a succinct encoding

scheme to represent the set of all 128 initial condi-

tions, which correspond to the corners of the seven-

dimensional hypercube that is centered at the origin

with the length of the sides equal to 2a for some

a 2 (0, 1]. An example of such a hypercube in 2D is

given in Fig. C1.

The seven-dimensional hypercube of interest has 275
128 corners. The coordinates of each of these corners

corresponds to a string of 61 of length 7. The encoding

B1 The maximum of the lhs is less than the minimum of the rhs.

1606 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 76

D
ow

nloaded from
 http://journals.am

etsoc.org/jas/article-pdf/76/6/1587/4830976/jas-d-17-0344_1.pdf by N
O

AA C
entral Library user on 11 August 2020



scheme that enumerates these 128 corners is given

below:

1) Let i be an integer in the range 0 to 127.

2) Let i5 b7b6b5b4b3b2b1 be the binary representation

of the integer i.

3) Define an encoding function h as follows:

h(1)5 1,

h(0)521.

4) Then associate the label i with the new string of 61

obtained as follows:

i/h(i)5h(b
7
)h(b

6
)h(b

5
)h(b

4
)h(b

3
)h(b

2
)h(b

1
)

5 c
7
c
6
c
5
c
4
c
3
c
2
c
1
,

where cj 5h(bj)561, depending on bj 5 1 or 0.

Accordingly, the four corners of the 2D hypercube in

Fig. C1 is given in Table C1. That is, the four nodes A,

B, C, and D are encoded as 0, 1, 2, and 3 in Table C1.

We can likewise develop a table for the 128 nodes of

the seven-dimensional hypercube of interest. As an

example, consider i5 83. In binary, i5 83 is 1010011.

Since h(i)5 (1, 21, 1, 21, 21, 1, 1), the corner of the

hypercube with these coordinates is denoted by the

integer i5 83.

APPENDIX D

Equivalence between the Projected S-LOM (7)
onto IS1 Given by (4) and (5) and the Lorenz

1963 Model Given in (10)

Define a set of new Fourier amplitude variables

h
i
5

Y
i

a
i

, i5 1, 4, 7 (D1)

and a new time variable

t5
t

t
c

, (D2)

where a1, a4, and a7 are the Fourier amplitude–scale

factors and tc is the time-scale factor.

Using (D1) and (D2) in (4) and (5), after simplifica-

tion, we get the transformed version of the reduced dy-

namics in IS1 as

dY
i

dt
5

d(a
i
h
i
)

dt

dt

dt
5

�
a
i

t
c

�
dh

i

dt
(D3)

and

d(h
i
)

dt
5F

i
(h, l), (D4)

where

F
i
(h,l)5

�
C

140
t
c
a
4

a
1

�
h
4
1 (C

110
t
c
)h

1
,

F
4
(h,l)5

�
C

417
t
c
a
1
a
7

a
4

�
h
1
h
7
1

�
C

410
t
c
la

1

a
4

�
h
1

1 (C
440

t
c
)h

4
,

F
7
(h,l)5

�
C

714
t
c
a
1
a
4

a
7

�
h
1
h
4
1 (C

770
t
c
)h

7
. (D5)

Recall that the values of the coefficients Cijk extracted

from Saltzman (1962) are given in Table 1. Now setting

(h1, h4, h7)5 (x, y, z), our goal is to choose the four

scaling factorsa1, a4, a7, and tc such that the vector field of

(D4) and (D5)matches that of Lorenzmodel given in (10).

Equating the coefficients of the like terms on the

right-hand side of (D5) with that of the Lorenz model

FIG. C1. A 2D hypercube of side length5 2 centered at the origin.

TABLE C1. The four corners of the 2D hypercube in Fig. C1.

i b2b1 c2c1 Label

0 0 0 21 21 A

1 0 1 21 1 B

2 1 0 1 21 C

3 1 1 1 1 D
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in (10), we obtain the following set of seven equations

relating the above four scaling parameters and the three

parameters s, b, and r in the Lorenz model:

t
c
52

s

C
110

,
a
4

a
1

52
C

110

C
140

,

a
7
52

C2
110

C
417

C
140

, r5
C

410
C

140
sl

C2
110

,

s5
C

110

C
440

, a
1
a
4
5

C2
110

C
714

C
417

C
140

s
, and

b5
C

770
s

C
110

. (D6)

Substituting the value of Cijk from Table 1 in (D6), we

readily obtain the following:

s5 9:999’ 10, b5 2:666’ 8/3, r5 0:9993l ,

a
1
5 0:1949, a

4
5 19:2406, a

7
5 1046:837, and

t
c
5 0:0675.

Stated in other words, there exists an invertible

linear scaling of the Fourier amplitudes and the time

given in (D1) and (D2), using which we can trans-

form the reduced S-LOM (3) given in (4) and (5)

[obtained by projecting S-LOM (7) onto the in-

variant subspace IS1] to the Lorenz 1963 model with

a specific value of the Prandtl number s5 10, aspect

ratio b5 8/3, and the Rayleigh parameters related by

r5 0:9993l.

By using a similar line of argument, we can show that

the S-LOM (3) in (6) and (7) is indeed equivalent to the

Lorenz model in (10).
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